How to implement Utilization factor procedure in IPython DPF (Mechanical)

bartoszplochocki
bartoszplochocki Member Posts: 1 **

Hi,

I'm trying to plot utilization factor based on Von Mises stress and arbitrary yield value. My similar script works in CPython, however in Mechanical Python Rsult I'm getting 0s. Von Mises Elemental Mean is plotting correc, but next step is not yielding results

def define_dpf_workflow(analysis):

   import mech_dpf

   import Ans.DataProcessing as dpf


   mech_dpf.setExtAPI(ExtAPI)

   dataSource = dpf.DataSources(analysis.ResultFileName)

#operator init

   seqv = dpf.operators.result.stress_von_mises()

   mean = dpf.operators.averaging.elemental_mean()

   div = dpf.operators.math.component_wise_divide()

#get von mises elementalnodal, step 1

   seqv.inputs.data_sources.Connect(dataSource)

   seqv.inputs.time_scoping.Connect([1.])

   seqv.inputs.requested_location.Connect('ElementalNodal')

#von mises passed to mean operator

   mean.Connect(seqv)

#scalar field with single value for all scoped elements

   element_ids = mean.outputs.getfield().ScopingIds

   yield_f = dpf.FieldsFactory.CreateScalarField(numEntities=len(element_ids), location=dpf.locations.elemental)

   yield_f.Data = [355.]*len(element_ids)

#division operator with von mises and scalar field

   div.inputs.fieldA.Connect(mean.outputs.field.GetData())

   div.inputs.fieldB.Connect(yield_f)

#workflow

   dpf_workflow = dpf.Workflow()

   dpf_workflow.Add(seqv)

   dpf_workflow.Add(mean)

   dpf_workflow.Add(div)

#plot

   dpf_workflow.SetOutputContour(div)

   dpf_workflow.Record('wf_id', False)

   this.WorkflowId = dpf_workflow.GetRecordedId()


Thank you

Bartosz

Answers

  • Rajesh Meena
    Rajesh Meena Moderator, Employee Posts: 128
    100 Comments 25 Likes Second Anniversary 5 Answers
    ✭✭✭✭

    @bartoszplochocki


    I am not sure how it worked in CPython but your field for yield should have Scoping support as well.

    Since you know about fieldA, try copying scoping from FieldA (yield_f.Scoping = mean_field.Scoping). I modified your code below.

    def define_dpf_workflow(analysis):
       import mech_dpf
    
       import Ans.DataProcessing as dpf
    
       mech_dpf.setExtAPI(ExtAPI)
    
    
       dataSource = dpf.DataSources(analysis.ResultFileName)
    
    
    #operator init
    
    
       seqv = dpf.operators.result.stress_von_mises()
    
    
       mean = dpf.operators.averaging.elemental_mean()
    
    
       div = dpf.operators.math.component_wise_divide()
    
    
    #get von mises elementalnodal, step 1
    
    
       seqv.inputs.data_sources.Connect(dataSource)
    
    
       seqv.inputs.time_scoping.Connect([1.])
    
    
       seqv.inputs.requested_location.Connect('Elemental')
    
    
    #von mises passed to mean operator
    
    
       mean.Connect(seqv)
       
       mean_field= mean.outputs.field.GetData()
    
    
    #scalar field with single value for all scoped elements
    
    
       element_ids = mean.outputs.getfield().ScopingIds
    
    
       yield_f = dpf.FieldsFactory.CreateScalarField(numEntities=len(element_ids), location=dpf.locations.elemental)
    
    
       yield_f.Data = [355.]*len(element_ids)
       
       yield_f.Scoping = mean_field.Scoping
    
    
    #division operator with von mises and scalar field
    
    
       div.inputs.fieldA.Connect(mean_field)
    
    
       div.inputs.fieldB.Connect(yield_f)
    
    
    #workflow
    
    
       dpf_workflow = dpf.Workflow()
    
    
       dpf_workflow.Add(seqv)
    
    
       dpf_workflow.Add(mean)
    
    
       dpf_workflow.Add(div)
    
    
    #plot
    
    
       dpf_workflow.SetOutputContour(div)
    
    
       dpf_workflow.Record('wf_id', False)
    
    
       this.WorkflowId = dpf_workflow.GetRecordedId()