How do I calculate linearized maximum principal stress (Membrane, Bending) using PyDPF?
Ayush Kumar
Member, Moderator, Employee Posts: 444
✭✭✭✭
- How do I calculate linearized maximum principal stress (Membrane, Bending) using PyDPF?
Tagged:
0
Comments
-
- Linearize the component stresses.
- Calculate maximum principal from the linearized component stresses.
import matplotlib.pyplot as plt from ansys.dpf import core as dpf from ansys.dpf.core import examples # model = dpf.Model(examples.find_static_rst()) model = dpf.Model(r"\Path\to\file.rst") nid_1 = 465 nid_2 = 673 mesh = model.metadata.meshed_region n1 = mesh.nodes.node_by_id(nid_1) n2 = mesh.nodes.node_by_id(nid_2) x_0 = n1.coordinates[0] y_0 = n1.coordinates[1] z_0 = n1.coordinates[2] x_1 = n2.coordinates[0] y_1 = n2.coordinates[1] z_1 = n2.coordinates[2] path_length = ((x_1 - x_0) ** 2 + (y_1 - y_0) ** 2 + (z_1 - z_0) ** 2) ** 0.5 n_points = 49 # A linearized stress has fixed a number of 48 points. delta = path_length / (n_points - 1) line_unit_vector = [(x_1 - x_0) / path_length, (y_1 - y_0) / path_length, (z_1 - z_0) / path_length] # Line equation fx = lambda t: x_0 + line_unit_vector[0] * t fy = lambda t: y_0 + line_unit_vector[1] * t fz = lambda t: z_0 + line_unit_vector[2] * t coordinates = [[fx(t * delta), fy(t * delta), fz(t * delta)] for t in range(n_points)] flat_coordinates = [entry for data in coordinates for entry in data] field_coord = dpf.fields_factory.create_3d_vector_field(n_points) field_coord.data = flat_coordinates field_coord.scoping.ids = list(range(1, n_points + 1)) # Stress Tensor s = model.operator("S") s.inputs.requested_location.connect("Nodal") s_f = s.outputs.fields_container.get_data() mapping_operator = dpf.operators.mapping.on_coordinates( fields_container=s_f, coordinates=field_coord, create_support=True, mesh=mesh ) fields_mapped = mapping_operator.outputs.fields_container.get_data() # Membrane Stress membrane_stress = (fields_mapped[0].get_entity_data(0) / 2 + fields_mapped[0].get_entity_data(48) / 2 + sum( fields_mapped[0].data[1:-1])) / (n_points - 1) # Bending stress path_1 = -1 * path_length / 2 path_n = path_length / 2 path_range = [path_1 + delta * i for i in range(n_points)] path_range_field = dpf.fields_factory.create_scalar_field(n_points, location=dpf.locations.nodal) path_range_field.data = path_range path_range_field.scoping.ids = range(1, 50) # Function to be integrated stress_scaled = dpf.operators.math.scale_by_field(fieldA=fields_mapped[0], fieldB=path_range_field) stress_scaled_data = list(stress_scaled.outputs.field.get_data().data) # Use extended Simpson's rule for Numerical Integration of `stress_scaled_data` stress_scaled_integral = (17 * stress_scaled_data[0] + 59 * stress_scaled_data[1] + 43 * stress_scaled_data[2] + 49 * stress_scaled_data[3] + 48 * sum(stress_scaled_data[4:-4]) + 49 * stress_scaled_data[ n_points - 4] + 43 * stress_scaled_data[n_points - 3] + 59 * stress_scaled_data[ n_points - 2] + 17 * stress_scaled_data[n_points - 1]) / 48.0 # Bending Stress at Node N1 b1 = stress_scaled_integral * (-6.0 / path_length) / 48.0 # Bending stress tensor @ N1 b1_f = dpf.fields_factory.create_tensor_field(1, "Nodal") b1_f.data = b1 # Membrane stress tensor m_f = dpf.fields_factory.create_tensor_field(1, "Nodal") m_f.data = membrane_stress # Calculate Membrane S1 s1_m = dpf.operators.invariant.principal_invariants() s1_m.inputs.field.connect(m_f) s1_m_val = s1_m.outputs.field_eig_1.get_data().data print("Membrane stress S1 - %s" % s1_m_val[0]) # Calculate Bending S1 @ N1 b1_m = dpf.operators.invariant.principal_invariants() b1_m.inputs.field.connect(b1_f) b1_m_val = b1_m.outputs.field_eig_1.get_data().data print("Bending stress S1 - %s" % b1_m_val[0])
0