How do I calculate linearized maximum principal stress (Membrane, Bending) using PyDPF?

Member, Moderator, Employee Posts: 481
100 Answers 250 Likes 100 Comments Second Anniversary
✭✭✭✭
edited June 2023 in Structures
  • How do I calculate linearized maximum principal stress (Membrane, Bending) using PyDPF?
Tagged:

Comments

  • Member, Moderator, Employee Posts: 481
    100 Answers 250 Likes 100 Comments Second Anniversary
    ✭✭✭✭
    edited May 2023
    1. Linearize the component stresses.
    2. Calculate maximum principal from the linearized component stresses.
    1. import matplotlib.pyplot as plt
    2.  
    3. from ansys.dpf import core as dpf
    4. from ansys.dpf.core import examples
    5.  
    6. # model = dpf.Model(examples.find_static_rst())
    7. model = dpf.Model(r"\Path\to\file.rst")
    8. nid_1 = 465
    9. nid_2 = 673
    10.  
    11. mesh = model.metadata.meshed_region
    12. n1 = mesh.nodes.node_by_id(nid_1)
    13. n2 = mesh.nodes.node_by_id(nid_2)
    14.  
    15. x_0 = n1.coordinates[0]
    16. y_0 = n1.coordinates[1]
    17. z_0 = n1.coordinates[2]
    18.  
    19. x_1 = n2.coordinates[0]
    20. y_1 = n2.coordinates[1]
    21. z_1 = n2.coordinates[2]
    22.  
    23. path_length = ((x_1 - x_0) ** 2 + (y_1 - y_0) ** 2 + (z_1 - z_0) ** 2) ** 0.5
    24.  
    25. n_points = 49 # A linearized stress has fixed a number of 48 points.
    26. delta = path_length / (n_points - 1)
    27.  
    28. line_unit_vector = [(x_1 - x_0) / path_length, (y_1 - y_0) / path_length, (z_1 - z_0) / path_length]
    29.  
    30. # Line equation
    31. fx = lambda t: x_0 + line_unit_vector[0] * t
    32. fy = lambda t: y_0 + line_unit_vector[1] * t
    33. fz = lambda t: z_0 + line_unit_vector[2] * t
    34.  
    35. coordinates = [[fx(t * delta), fy(t * delta), fz(t * delta)] for t in range(n_points)]
    36. flat_coordinates = [entry for data in coordinates for entry in data]
    37.  
    38. field_coord = dpf.fields_factory.create_3d_vector_field(n_points)
    39. field_coord.data = flat_coordinates
    40. field_coord.scoping.ids = list(range(1, n_points + 1))
    41.  
    42. # Stress Tensor
    43. s = model.operator("S")
    44. s.inputs.requested_location.connect("Nodal")
    45. s_f = s.outputs.fields_container.get_data()
    46.  
    47. mapping_operator = dpf.operators.mapping.on_coordinates(
    48. fields_container=s_f,
    49. coordinates=field_coord,
    50. create_support=True,
    51. mesh=mesh
    52. )
    53. fields_mapped = mapping_operator.outputs.fields_container.get_data()
    54.  
    55. # Membrane Stress
    56. membrane_stress = (fields_mapped[0].get_entity_data(0) / 2 + fields_mapped[0].get_entity_data(48) / 2 + sum(
    57. fields_mapped[0].data[1:-1])) / (n_points - 1)
    58.  
    59. # Bending stress
    60. path_1 = -1 * path_length / 2
    61. path_n = path_length / 2
    62. path_range = [path_1 + delta * i for i in range(n_points)]
    63. path_range_field = dpf.fields_factory.create_scalar_field(n_points, location=dpf.locations.nodal)
    64. path_range_field.data = path_range
    65. path_range_field.scoping.ids = range(1, 50)
    66.  
    67. # Function to be integrated
    68. stress_scaled = dpf.operators.math.scale_by_field(fieldA=fields_mapped[0], fieldB=path_range_field)
    69. stress_scaled_data = list(stress_scaled.outputs.field.get_data().data)
    70.  
    71. # Use extended Simpson's rule for Numerical Integration of `stress_scaled_data`
    72. stress_scaled_integral = (17 * stress_scaled_data[0] + 59 * stress_scaled_data[1] + 43 * stress_scaled_data[2] + 49 *
    73. stress_scaled_data[3] + 48 * sum(stress_scaled_data[4:-4]) + 49 * stress_scaled_data[
    74. n_points - 4] + 43 * stress_scaled_data[n_points - 3] + 59 * stress_scaled_data[
    75. n_points - 2] + 17 * stress_scaled_data[n_points - 1]) / 48.0
    76.  
    77.  
    78. # Bending Stress at Node N1
    79. b1 = stress_scaled_integral * (-6.0 / path_length) / 48.0
    80.  
    81. # Bending stress tensor @ N1
    82. b1_f = dpf.fields_factory.create_tensor_field(1, "Nodal")
    83. b1_f.data = b1
    84.  
    85. # Membrane stress tensor
    86. m_f = dpf.fields_factory.create_tensor_field(1, "Nodal")
    87. m_f.data = membrane_stress
    88.  
    89. # Calculate Membrane S1
    90. s1_m = dpf.operators.invariant.principal_invariants()
    91. s1_m.inputs.field.connect(m_f)
    92. s1_m_val = s1_m.outputs.field_eig_1.get_data().data
    93. print("Membrane stress S1 - %s" % s1_m_val[0])
    94.  
    95. # Calculate Bending S1 @ N1
    96. b1_m = dpf.operators.invariant.principal_invariants()
    97. b1_m.inputs.field.connect(b1_f)
    98. b1_m_val = b1_m.outputs.field_eig_1.get_data().data
    99. print("Bending stress S1 - %s" % b1_m_val[0])

Welcome!

It looks like you're new here. Sign in or register to get started.