How do I calculate linearized maximum principal stress (Membrane, Bending) using PyDPF?

Ayush Kumar
Member, Moderator, Employee Posts: 481
✭✭✭✭
- How do I calculate linearized maximum principal stress (Membrane, Bending) using PyDPF?
Tagged:
0
Comments
-
- Linearize the component stresses.
- Calculate maximum principal from the linearized component stresses.
- import matplotlib.pyplot as plt
- from ansys.dpf import core as dpf
- from ansys.dpf.core import examples
- # model = dpf.Model(examples.find_static_rst())
- model = dpf.Model(r"\Path\to\file.rst")
- nid_1 = 465
- nid_2 = 673
- mesh = model.metadata.meshed_region
- n1 = mesh.nodes.node_by_id(nid_1)
- n2 = mesh.nodes.node_by_id(nid_2)
- x_0 = n1.coordinates[0]
- y_0 = n1.coordinates[1]
- z_0 = n1.coordinates[2]
- x_1 = n2.coordinates[0]
- y_1 = n2.coordinates[1]
- z_1 = n2.coordinates[2]
- path_length = ((x_1 - x_0) ** 2 + (y_1 - y_0) ** 2 + (z_1 - z_0) ** 2) ** 0.5
- n_points = 49 # A linearized stress has fixed a number of 48 points.
- delta = path_length / (n_points - 1)
- line_unit_vector = [(x_1 - x_0) / path_length, (y_1 - y_0) / path_length, (z_1 - z_0) / path_length]
- # Line equation
- fx = lambda t: x_0 + line_unit_vector[0] * t
- fy = lambda t: y_0 + line_unit_vector[1] * t
- fz = lambda t: z_0 + line_unit_vector[2] * t
- coordinates = [[fx(t * delta), fy(t * delta), fz(t * delta)] for t in range(n_points)]
- flat_coordinates = [entry for data in coordinates for entry in data]
- field_coord = dpf.fields_factory.create_3d_vector_field(n_points)
- field_coord.data = flat_coordinates
- field_coord.scoping.ids = list(range(1, n_points + 1))
- # Stress Tensor
- s = model.operator("S")
- s.inputs.requested_location.connect("Nodal")
- s_f = s.outputs.fields_container.get_data()
- mapping_operator = dpf.operators.mapping.on_coordinates(
- fields_container=s_f,
- coordinates=field_coord,
- create_support=True,
- mesh=mesh
- )
- fields_mapped = mapping_operator.outputs.fields_container.get_data()
- # Membrane Stress
- membrane_stress = (fields_mapped[0].get_entity_data(0) / 2 + fields_mapped[0].get_entity_data(48) / 2 + sum(
- fields_mapped[0].data[1:-1])) / (n_points - 1)
- # Bending stress
- path_1 = -1 * path_length / 2
- path_n = path_length / 2
- path_range = [path_1 + delta * i for i in range(n_points)]
- path_range_field = dpf.fields_factory.create_scalar_field(n_points, location=dpf.locations.nodal)
- path_range_field.data = path_range
- path_range_field.scoping.ids = range(1, 50)
- # Function to be integrated
- stress_scaled = dpf.operators.math.scale_by_field(fieldA=fields_mapped[0], fieldB=path_range_field)
- stress_scaled_data = list(stress_scaled.outputs.field.get_data().data)
- # Use extended Simpson's rule for Numerical Integration of `stress_scaled_data`
- stress_scaled_integral = (17 * stress_scaled_data[0] + 59 * stress_scaled_data[1] + 43 * stress_scaled_data[2] + 49 *
- stress_scaled_data[3] + 48 * sum(stress_scaled_data[4:-4]) + 49 * stress_scaled_data[
- n_points - 4] + 43 * stress_scaled_data[n_points - 3] + 59 * stress_scaled_data[
- n_points - 2] + 17 * stress_scaled_data[n_points - 1]) / 48.0
- # Bending Stress at Node N1
- b1 = stress_scaled_integral * (-6.0 / path_length) / 48.0
- # Bending stress tensor @ N1
- b1_f = dpf.fields_factory.create_tensor_field(1, "Nodal")
- b1_f.data = b1
- # Membrane stress tensor
- m_f = dpf.fields_factory.create_tensor_field(1, "Nodal")
- m_f.data = membrane_stress
- # Calculate Membrane S1
- s1_m = dpf.operators.invariant.principal_invariants()
- s1_m.inputs.field.connect(m_f)
- s1_m_val = s1_m.outputs.field_eig_1.get_data().data
- print("Membrane stress S1 - %s" % s1_m_val[0])
- # Calculate Bending S1 @ N1
- b1_m = dpf.operators.invariant.principal_invariants()
- b1_m.inputs.field.connect(b1_f)
- b1_m_val = b1_m.outputs.field_eig_1.get_data().data
- print("Bending stress S1 - %s" % b1_m_val[0])
0